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Inverse, Ill-posed Problems

Let A : X → X be an operator, X a Banach space.

Consider solving
Au = f

for u ∈ dom(A), where the data f ∈ X and A are known.
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The Specific Inverse Problem

In this talk,
A : C [0, 1]→ C [0, 1] is a nonlinear Volterra Hammerstein
convolution operator:

Au(t) :=

∫ t

0
k(t − s)g(s, u(s)) ds

Consider solving

Au(t) =

∫ t

0
k(t − s)g(s, u(s)) ds = f (t), t ∈ [0, 1],

for ū ∈ C [0, 1], given data f ∈ Range(A), kernel k ∈ C ν([0, 1]) is
ν-smoothing, and nonlinear function g : [0, 1]× R→ R
continuous.
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for ū ∈ C [0, 1], given data f ∈ Range(A), kernel k ∈ C ν([0, 1]) is
ν-smoothing, and nonlinear function g : [0, 1]× R→ R
continuous.

Brooks A Posteriori Parameter Selection



Applications

Volterra Hammerstein equations appear in applications such as:

chemical absorption kinetics

biological models

models of epidemics

models of two-step systems involving a nonlinear input,
followed by linear dynamics

u(t)→ g(t, u(t))→
∫ t

0
k(t − s)g(s, u(s))ds
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Properties of this Class of Problems

Under suitable conditions on k and g :

1. A unique solution exists.

2. The problem is ill-posed due to lack of continuous dependence
of solutions on data.

3. Want to approximate the ‘true’ solution ū using ‘noisy’ data
f δ, unavoidable due to modeling or measurement error,
round-off error, etc.

4. Model the error deterministically. For known δ > 0, make the
standing assumption that given measured data f δ ∈ C [0, 1]
satisifes ∥∥∥f − f δ

∥∥∥ ≤ δ.
Ill-posedness of the problem means solution to Au = f δ is a
poor approximation.
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f δ, unavoidable due to modeling or measurement error,
round-off error, etc.

4. Model the error deterministically. For known δ > 0, make the
standing assumption that given measured data f δ ∈ C [0, 1]
satisifes ∥∥∥f − f δ

∥∥∥ ≤ δ.
Ill-posedness of the problem means solution to Au = f δ is a
poor approximation.

Brooks A Posteriori Parameter Selection



Properties of this Class of Problems

Under suitable conditions on k and g :

1. A unique solution exists.

2. The problem is ill-posed due to lack of continuous dependence
of solutions on data.

3. Want to approximate the ‘true’ solution ū using ‘noisy’ data
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Approach

Use a regularization scheme on Au = f . Typically solve a
family of “nearby” parameter-dependent well-posed equations,
Rαu = f whose solutions, uα,

depend continuously on data f
i.e. the mapping f → uα is continuous

converge to the exact solution as α→ 0
‖uα − ū‖ → 0 as α→ 0.

Use a parameter selection strategy dα to select the
regularization parameter α to obtain a regularization method
that is convergent;
Choose α = α(δ) so that if uδ

α solves Rαu = f δ, then

α(δ)→ 0 as δ → 0,
‖uδ

α − ū‖ → 0 as δ → 0.
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Approximating Equation (Local Regularization)

One-step equation (Luo (’07), Brooks, Lamm, and Luo (’10))
Approximate ū by solving:

aαGu +Aαu = fα,

where

aα =

∫ α

0

∫ ρ

0
k(ρ− s)ds dηα(ρ)

fα =

∫ α

0
f (t + ρ)dηα(ρ)

Aαw(t) :=

∫ t

0

∫ α

0
k(t + ρ− s)dηα(ρ) g(s,w(s)) ds

−aαg(t,w(t)) + aαg(t,w(t − τ))

+aαgx(t,w(t − τ)) (w(t)− w(t − τ)) ,

for τ = τ(t, α) suitably chosen.
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Known A Priori Convergence results

Valid regularization method.

Under the source condition that ū is uniformly Hölder
continuous with exponent γ ∈ (0, 1], given noisy data

f δ ∈ C [0, 1], the choice of α = Kδ
1

γ+ν guarantees that∥∥∥uδ
α(δ) − ū

∥∥∥ = O
(
δ

γ
γ+ν

)
as δ → 0.

Numerical implementation involves solving a nonlinear
equation at only the first step (improvement over Two-step
approach (Lamm and Dai 2005)).

New results (2010) - Established well-posedness of the
One-step approximating equation in the absence of the a

priori assumption α = Kδ
1

γ+ν . This was accomplished treating
the equation as a perturbation of the Two-step equation
(Lamm and Dai 2005) and making an appropriate choice of τ
dependent on smoothness of data f δ.
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General Approximation Error and Parameter Selection
Strategy

Consider the bound∥∥∥uδ
α − ū

∥∥∥ ≤ ‖uα − ū‖+
∥∥∥uδ

α − uα

∥∥∥ .
Error due to regularization: ‖uα − ū‖ → 0 as α→ 0.

Error due to regularization and noise in the data:∥∥∥uδ
α(δ) − uα

∥∥∥→∞ as α→ 0.

Choose the regularization parameter α = α(δ)
(a posteriori) leading to convergent methods, i.e.

1 α(δ)→ 0 as δ → 0.

2

∥∥∥uδ
α − ū

∥∥∥→ 0 as δ → 0.
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A Posteriori Parameter Selection Strategies

For τ ∈ (1, 2) fixed, choose α for which

Morozov’s Discrepancy Principle

d(α) =
∥∥∥Auδ

α − f δ
∥∥∥ = τ̃ δ.

Modified Discrepancy Principle

d(α) = αm
∥∥∥Auδ

α − f δ
∥∥∥ = τ̃ δs , m, s > 0

(Modified) Discrepancy Principle for Local
Regularization with One-step equation

d(α) = am
α

∥∥∥Aαuδ
α − f δ

α

∥∥∥ = τ̃ δ, m > 0

where Aα and f δ
α as as defined above for One-step local

regularizing equation for the Hammerstein problem.
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A posteriori Convergence

Theorem

Under suitable conditions on ηα and the linearization parameter τ ,
it can be shown that, for δ > 0 sufficiently small or for ‖f δ‖/δ
sufficiently large, there exists a smallest α = α(δ) ∈ (0, ᾱ]
satisfying the Modified Discrepancy Principle for Local
Regularization with the One-step equation. Further, if the selection
of α(δ) is made using the Principle, it follows that α(δ)→ 0 and
‖uδ

α − ū‖ → 0 as δ → 0.

Brooks A Posteriori Parameter Selection



Numerical Example

Solve ∫ t

0

(t − s)2

2
u3(s)ds = f (t), t ∈ [0, 1]

True solution ū(t) = 8(t − 0.4)2 + 1
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A Priori Example

Figure: Three-smoothing problem with 0%, 0.5%, 1% and 4% relative
error in the data. The value of α(δ) is selected using that which
minimizes the solution error.
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A Posteriori Example

Figure: Three-smoothing problem with 1% relative error in the data
(δ = 0.0067). We use m = .01 and τ̃ =

√
2 and ᾱ = .25. The value of

α(δ) = 0.165 is selected using the modified discrepancy principle; for uδ
α

determined using this α, there is 4.4% relative error in the recovered
solution.
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