A Posteriori Parameter Selection for Local Regularization of Nonlinear Volterra Equations of Hammerstein Type

Cara D. Brooks

Rose-Hulman Institute of Technology

June 8, 2010

Joint work with Patricia K. Lamm

Michigan State University

23nd annual Inverse Problems Symposium

Let $\mathcal{A}: X \to X$ be an operator, X a Banach space.

Consider solving

$$Au = f$$

for $u \in dom(\mathcal{A})$, where the *data* $f \in X$ and \mathcal{A} are known.

In this talk, $\mathcal{A}: C[0,1] \to C[0,1] \text{ is a nonlinear Volterra Hammerstein}$ convolution operator:

$$\mathcal{A}u(t) := \int_0^t k(t-s)g(s,u(s)) \, ds$$

In this talk,

 $\mathcal{A}: \mathit{C}[0,1] \rightarrow \mathit{C}[0,1]$ is a nonlinear Volterra Hammerstein convolution operator:

$$\mathcal{A}u(t) := \int_0^t k(t-s)g(s,u(s)) \, ds$$

Consider solving

$$\mathcal{A}u(t)=\int_0^t k(t-s)g(s,u(s))\,ds=f(t),\quad t\in[0,1],$$

for $\bar{u} \in C[0, 1]$, given data $f \in Range(\mathcal{A})$, kernel $k \in C^{\nu}([0, 1])$ is ν -smoothing, and nonlinear function $g : [0, 1] \times \mathbb{R} \to \mathbb{R}$ continuous.

- chemical absorption kinetics
- biological models
- models of epidemics

- chemical absorption kinetics
- biological models
- models of epidemics
- models of two-step systems involving a nonlinear input, followed by linear dynamics

- chemical absorption kinetics
- biological models
- models of epidemics
- models of two-step systems involving a nonlinear input, followed by linear dynamics

$$u(t) \rightarrow g(t, u(t))$$

- chemical absorption kinetics
- biological models
- models of epidemics
- models of two-step systems involving a nonlinear input, followed by linear dynamics

$$u(t) \rightarrow g(t, u(t)) \rightarrow \int_0^t k(t-s)g(s, u(s))ds$$

Under suitable conditions on k and g:

1. A unique solution exists.

Under suitable conditions on k and g:

- 1. A unique solution exists.
- 2. The problem is *ill-posed* due to lack of continuous dependence of solutions on data.

Under suitable conditions on k and g:

- 1. A unique solution exists.
- 2. The problem is *ill-posed* due to lack of continuous dependence of solutions on data.
- 3. Want to approximate the 'true' solution \bar{u} using 'noisy' data f^{δ} , unavoidable due to modeling or measurement error, round-off error, etc.

Under suitable conditions on k and g:

- 1. A unique solution exists.
- 2. The problem is *ill-posed* due to lack of continuous dependence of solutions on data.
- 3. Want to approximate the 'true' solution \bar{u} using 'noisy' data f^{δ} , unavoidable due to modeling or measurement error, round-off error, etc.
- 4. Model the error deterministically. For known $\delta > 0$, make the standing assumption that given measured data $f^{\delta} \in C[0, 1]$ satisifes

$$\left\|f-f^{\delta}\right\|\leq\delta.$$

Under suitable conditions on k and g:

- 1. A unique solution exists.
- 2. The problem is *ill-posed* due to lack of continuous dependence of solutions on data.
- 3. Want to approximate the 'true' solution \bar{u} using 'noisy' data f^{δ} , unavoidable due to modeling or measurement error, round-off error, etc.
- 4. Model the error deterministically. For known $\delta > 0$, make the standing assumption that given measured data $f^{\delta} \in C[0, 1]$ satisifes

$$\left\|f-f^{\delta}\right\|\leq\delta.$$

Ill-posedness of the problem means solution to $Au = f^{\delta}$ is a poor approximation.

- Use a *regularization* scheme on Au = f. Typically solve a family of "nearby" parameter-dependent *well-posed* equations, $R_{\alpha}u = f$ whose solutions, u_{α} ,
 - depend continuously on data f i.e. the mapping $f \to u_{\alpha}$ is continuous

- Use a *regularization* scheme on Au = f. Typically solve a family of "nearby" parameter-dependent *well-posed* equations, R_αu = f whose solutions, u_α,
 - depend continuously on data f i.e. the mapping f → u_α is continuous
 converge to the exact solution as α → 0 ||u_α ū|| → 0 as α → 0.

- Use a *regularization* scheme on Au = f. Typically solve a family of "nearby" parameter-dependent *well-posed* equations, R_αu = f whose solutions, u_α,
 - depend continuously on data f
 i.e. the mapping f → u_α is continuous
 converge to the exact solution as α → 0
 ||u_α ū|| → 0 as α → 0.
- Use a parameter selection strategy d_α to select the regularization parameter α to obtain a regularization method that is convergent;

- Use a *regularization* scheme on Au = f. Typically solve a family of "nearby" parameter-dependent *well-posed* equations, R_αu = f whose solutions, u_α,
 - depend continuously on data f
 i.e. the mapping f → u_α is continuous
 converge to the exact solution as α → 0
 ||u_α ū|| → 0 as α → 0.
- Use a parameter selection strategy d_α to select the regularization parameter α to obtain a regularization method that is convergent; Choose α = α(δ) so that if u^δ_α solves R_αu = f^δ, then
 α(δ) → 0 as δ → 0,

- Use a *regularization* scheme on Au = f. Typically solve a family of "nearby" parameter-dependent *well-posed* equations, R_αu = f whose solutions, u_α,
 - depend continuously on data f
 i.e. the mapping f → u_α is continuous
 converge to the exact solution as α → 0
 ||u_α ū|| → 0 as α → 0.
- Use a parameter selection strategy d_α to select the regularization parameter α to obtain a regularization method that is convergent;
 Choose α = α(δ) so that if u^δ_α solves R_αu = f^δ, then

•
$$\alpha(\delta) \rightarrow 0$$
 as $\delta \rightarrow 0$,

•
$$\|u_{\alpha}^{\delta} - \overline{u}\| \to 0 \text{ as } \delta \to 0.$$

Approximating Equation (Local Regularization)

One-step equation (Luo ('07), Brooks, Lamm, and Luo ('10)) Approximate \bar{u} by solving:

$$a_{\alpha}\mathcal{G}u+\mathcal{A}_{\alpha}u=f_{\alpha},$$

where

$$\begin{aligned} a_{\alpha} &= \int_{0}^{\alpha} \int_{0}^{\rho} k(\rho - s) ds \ d\eta_{\alpha}(\rho) \\ f_{\alpha} &= \int_{0}^{\alpha} f(t + \rho) d\eta_{\alpha}(\rho) \\ \mathcal{A}_{\alpha} w(t) &:= \int_{0}^{t} \int_{0}^{\alpha} k(t + \rho - s) d\eta_{\alpha}(\rho) \ g(s, w(s)) \ ds \\ &- a_{\alpha} g(t, w(t)) + a_{\alpha} g(t, w(t - \tau)) \\ &+ a_{\alpha} g_{x}(t, w(t - \tau)) (w(t) - w(t - \tau)) \,, \end{aligned}$$

for $\tau = \tau(t, \alpha)$ suitably chosen.

• Valid regularization method.

- Valid regularization method.
- Under the source condition that \bar{u} is uniformly Hölder continuous with exponent $\gamma \in (0, 1]$, given noisy data $f^{\delta} \in C[0, 1]$, the choice of $\alpha = K\delta^{\frac{1}{\gamma+\nu}}$ guarantees that $\left\| u_{\alpha(\delta)}^{\delta} \bar{u} \right\| = O\left(\delta^{\frac{\gamma}{\gamma+\nu}}\right)$ as $\delta \to 0$.

- Valid regularization method.
- Under the source condition that \bar{u} is uniformly Hölder continuous with exponent $\gamma \in (0, 1]$, given noisy data $f^{\delta} \in C[0, 1]$, the choice of $\alpha = K\delta^{\frac{1}{\gamma+\nu}}$ guarantees that $\left\| u_{\alpha(\delta)}^{\delta} \bar{u} \right\| = O\left(\delta^{\frac{\gamma}{\gamma+\nu}}\right)$ as $\delta \to 0$.
- Numerical implementation involves solving a nonlinear equation at only the first step (improvement over Two-step approach (Lamm and Dai 2005)).

- Valid regularization method.
- Under the source condition that \bar{u} is uniformly Hölder continuous with exponent $\gamma \in (0, 1]$, given noisy data $f^{\delta} \in C[0, 1]$, the choice of $\alpha = K\delta^{\frac{1}{\gamma+\nu}}$ guarantees that $\left\| u^{\delta}_{\alpha(\delta)} \bar{u} \right\| = O\left(\delta^{\frac{\gamma}{\gamma+\nu}}\right)$ as $\delta \to 0$.
- Numerical implementation involves solving a nonlinear equation at only the first step (improvement over Two-step approach (Lamm and Dai 2005)).
- New results (2010) Established well-posedness of the One-step approximating equation in the absence of the *a priori* assumption α = Kδ¹/_{γ+ν}. This was accomplished treating the equation as a perturbation of the Two-step equation (Lamm and Dai 2005) and making an appropriate choice of τ dependent on smoothness of data f^δ.

General Approximation Error and Parameter Selection Strategy

Consider the bound

$$\left\| u_{\alpha}^{\delta} - \bar{u} \right\| \leq \left\| u_{\alpha} - \bar{u} \right\| + \left\| u_{\alpha}^{\delta} - u_{\alpha} \right\|.$$

- Error due to regularization: $||u_{\alpha} \bar{u}|| \rightarrow 0$ as $\alpha \rightarrow 0$.
- Error due to regularization and noise in the data:

$$\left\| u_{\alpha(\delta)}^{\delta} - u_{\alpha} \right\| \to \infty \text{ as } \alpha \to 0.$$

Choose the regularization parameter $\alpha = \alpha(\delta)$ (*a posteriori*) leading to convergent methods, i.e.

•
$$\alpha(\delta) \to 0 \text{ as } \delta \to 0.$$

• $\left\| u_{\alpha}^{\delta} - \bar{u} \right\| \to 0 \text{ as } \delta \to 0$

A Posteriori Parameter Selection Strategies

For $au \in (1,2)$ fixed, choose lpha for which

• Morozov's Discrepancy Principle

$$d(\alpha) = \left\| \mathcal{A} u_{\alpha}^{\delta} - f^{\delta} \right\| = \tilde{\tau} \delta.$$

A Posteriori Parameter Selection Strategies

For $au \in (1,2)$ fixed, choose lpha for which

• Morozov's Discrepancy Principle

$$d(\alpha) = \left\| \mathcal{A} u_{\alpha}^{\delta} - f^{\delta} \right\| = \tilde{\tau} \delta.$$

• Modified Discrepancy Principle

$$d(\alpha) = \alpha^m \left\| \mathcal{A} u_{\alpha}^{\delta} - f^{\delta} \right\| = \tilde{\tau} \delta^s, \quad m, s > 0$$

A Posteriori Parameter Selection Strategies

For $au \in$ (1,2) fixed, choose lpha for which

• Morozov's Discrepancy Principle

$$d(\alpha) = \left\| \mathcal{A} u_{\alpha}^{\delta} - f^{\delta} \right\| = \tilde{\tau} \delta.$$

• Modified Discrepancy Principle

$$d(\alpha) = \alpha^{m} \left\| \mathcal{A} u_{\alpha}^{\delta} - f^{\delta} \right\| = \tilde{\tau} \delta^{s}, \quad m, s > 0$$

• (Modified) Discrepancy Principle for Local Regularization with One-step equation

$$d(\alpha) = a_{\alpha}^{m} \left\| \mathcal{A}_{\alpha} u_{\alpha}^{\delta} - f_{\alpha}^{\delta} \right\| = \tilde{\tau} \delta, \quad m > 0$$

where A_{α} and f_{α}^{δ} as as defined above for One-step local regularizing equation for the Hammerstein problem.

Theorem

Under suitable conditions on η_{α} and the linearization parameter τ , it can be shown that, for $\delta > 0$ sufficiently small or for $||f^{\delta}||/\delta$ sufficiently large, there exists a smallest $\alpha = \alpha(\delta) \in (0, \bar{\alpha}]$ satisfying the Modified Discrepancy Principle for Local Regularization with the One-step equation. Further, if the selection of $\alpha(\delta)$ is made using the Principle, it follows that $\alpha(\delta) \to 0$ and $||u_{\alpha}^{\delta} - \bar{u}|| \to 0$ as $\delta \to 0$.

Solve $\int_0^t rac{(t-s)^2}{2} u^3(s) ds = f(t), \quad t \in [0,1]$

True solution $\bar{u}(t) = 8(t - 0.4)^2 + 1$

A Priori Example

Figure: Three-smoothing problem with 0%, 0.5%, 1% and 4% relative error in the data. The value of $\alpha(\delta)$ is selected using that which minimizes the solution error.

A Posteriori Example

Figure: Three-smoothing problem with 1% relative error in the data $(\delta = 0.0067)$. We use m = .01 and $\tilde{\tau} = \sqrt{2}$ and $\bar{\alpha} = .25$. The value of $\alpha(\delta) = 0.165$ is selected using the modified discrepancy principle; for u_{α}^{δ} determined using this α , there is 4.4% relative error in the recovered solution.