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Inverse, lll-posed Problems

Let A: X — X be an operator, X a Banach space.

Consider solving

Au=f
for u € dom(.A), where the data f € X and A are known.
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The Specific Inverse Problem

In this talk,
A : C[0,1] — C[0,1] is a nonlinear Volterra Hammerstein
convolution operator:

Au(t) = /0 k(= 5)g(s, u(s)) ds
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The Specific Inverse Problem

In this talk,
A : C[0,1] — C[0,1] is a nonlinear Volterra Hammerstein
convolution operator:

Au(t) = /0 K(t — s)g(s, u(s)) ds
Consider solving
Au(t) = /Ot k(t —s)g(s,u(s))ds = f(t), te]0,1],

for o € C[0,1], given data f € Range(.A), kernel k € C([0,1]) is
v-smoothing, and nonlinear function g : [0,1] x R — R
continuous.
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Applications

Volterra Hammerstein equations appear in applications such as:
@ chemical absorption kinetics
@ biological models

@ models of epidemics
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Applications

Volterra Hammerstein equations appear in applications such as:
@ chemical absorption kinetics
@ biological models
@ models of epidemics

@ models of two-step systems involving a nonlinear input,
followed by linear dynamics
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Applications

Volterra Hammerstein equations appear in applications such as:

chemical absorption kinetics
@ biological models

@ models of epidemics

°

models of two-step systems involving a nonlinear input,
followed by linear dynamics

u(t) — g(t, u(t))
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Applications

Volterra Hammerstein equations appear in applications such as:

chemical absorption kinetics
@ biological models

@ models of epidemics

°

models of two-step systems involving a nonlinear input,
followed by linear dynamics

u(t) — g(t,u(t) — /0 k(t — )g(s. u(s))ds
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Properties of this Class of Problems

Under suitable conditions on k and g:

1. A unique solution exists.
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Properties of this Class of Problems

Under suitable conditions on k and g:

1. A unique solution exists.

2. The problem is ill-posed due to lack of continuous dependence
of solutions on data.
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Properties of this Class of Problems

Under suitable conditions on k and g:

1. A unique solution exists.

2. The problem is ill-posed due to lack of continuous dependence
of solutions on data.

3. Want to approximate the ‘true’ solution & using ‘noisy’ data
f°, unavoidable due to modeling or measurement error,
round-off error, etc.
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Properties of this Class of Problems

Under suitable conditions on k and g:

1. A unique solution exists.

2. The problem is ill-posed due to lack of continuous dependence
of solutions on data.

3. Want to approximate the ‘true’ solution & using ‘noisy’ data
f°, unavoidable due to modeling or measurement error,
round-off error, etc.

4. Model the error deterministically. For known § > 0, make the

standing assumption that given measured data f° € C[0, 1]
satisifes

- <s
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Properties of this Class of Problems

Under suitable conditions on k and g:

1. A unique solution exists.

2. The problem is ill-posed due to lack of continuous dependence
of solutions on data.

3. Want to approximate the ‘true’ solution & using ‘noisy’ data
f°, unavoidable due to modeling or measurement error,
round-off error, etc.

4. Model the error deterministically. For known § > 0, make the
standing assumption that given measured data f° € C[0, 1]
satisifes

Hf 0 H <6

lll-posedness of the problem means solution to Au = £ is a
poor approximation.
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Approach

@ Use a regularization scheme on Au = f. Typically solve a
family of “nearby” parameter-dependent well-posed equations,
R,u = f whose solutions, ug,

o depend continuously on data f
i.e. the mapping f — u, is continuous
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Approach

@ Use a regularization scheme on Au = f. Typically solve a
family of “nearby” parameter-dependent well-posed equations,
R,u = f whose solutions, ug,

o depend continuously on data f
i.e. the mapping f — u, is continuous

e converge to the exact solution as o — 0
|luo — T|| — 0 as @ — 0.
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Approach

@ Use a regularization scheme on Au = f. Typically solve a
family of “nearby” parameter-dependent well-posed equations,
R,u = f whose solutions, ug,

e depend continuously on data f
i.e. the mapping f — u, is continuous
e converge to the exact solution as a« — 0
|luo — T|| — 0 as @ — 0.

@ Use a parameter selection strategy d, to select the
regularization parameter « to obtain a regularization method
that is convergent,
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Approach

@ Use a regularization scheme on Au = f. Typically solve a
family of “nearby” parameter-dependent well-posed equations,
R,u = f whose solutions, ug,

o depend continuously on data f
i.e. the mapping f — u, is continuous

e converge to the exact solution as o — 0
|luo — T|| — 0 as @ — 0.

@ Use a parameter selection strategy d, to select the
regularization parameter « to obtain a regularization method

that is convergent,
Choose a = a(d) so that if ud solves Ryu = 9, then

o a(d) —0asd—0,
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Approach

@ Use a regularization scheme on Au = f. Typically solve a
family of “nearby” parameter-dependent well-posed equations,
R,u = f whose solutions, ug,

o depend continuously on data f
i.e. the mapping f — u, is continuous

e converge to the exact solution as o — 0
|luo — T|| — 0 as @ — 0.

@ Use a parameter selection strategy d, to select the
regularization parameter « to obtain a regularization method

that is convergent,
Choose a = a(d) so that if ud solves Ryu = 9, then

o a(d) > 0asd—0,
o || —T|| - 0asé—0.
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Approximating Equation (Local Regularization)

One-step equation (Luo ('07), Brooks, Lamm, and Luo ('10))
Approximate @ by solving:

anGu+ Aqu = fa,

a, = // p —s)ds dn.(p)

fo— /0 F(t+ p)dna(p)

where

Aaw(t) = /Ot/()a K(t + p — s)dna(p) g(s, w(s)) ds

_aag(ta W(t)) + aag(t7 W(t - T))
Faagx(t, w(t — 7)) (w(t) — w(t — 7)),

for 7 = 7(t, ) suitably chosen.
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Known A Priori Convergence results

o Valid regularization method.
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Known A Priori Convergence results

o Valid regularization method.
@ Under the source condition that @ is uniformly Holder
continuous with exponent v € (0, 1], given noisy data

f° € C[0, 1], the choice of o = Ko7+ guarantees that

|t~ 7| =0 (577) a6 —0.
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Known A Priori Convergence results

o Valid regularization method.
@ Under the source condition that @ is uniformly Holder
continuous with exponent v € (0, 1], given noisy data

f° € C[0, 1], the choice of & = K§7+ guarantees that

@ Numerical implementation involves solving a nonlinear
equation at only the first step (improvement over Two-step
approach (Lamm and Dai 2005)).

W) — u” =0(577) ass—o.
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Known A Priori Convergence results

o Valid regularization method.
@ Under the source condition that @ is uniformly Holder
continuous with exponent v € (0, 1], given noisy data

f° € C[0, 1], the choice of & = K§7+ guarantees that

@ Numerical implementation involves solving a nonlinear
equation at only the first step (improvement over Two-step
approach (Lamm and Dai 2005)).

o New results (2010) - Established well-posedness of the
One-step approximating equation in the absence of the a

W) — u” =0(577) ass—o.

priori assumption o = Kéﬁ. This was accomplished treating
the equation as a perturbation of the Two-step equation
(Lamm and Dai 2005) and making an appropriate choice of 7
dependent on smoothness of data °.
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General Approximation Error and Parameter Selection

Strategy

Consider the bound

|2 = 3| < llua = 3l + || - v

@ Error due to regularization: ||u, — ]| — 0 as @ — 0.

@ Error due to regularization and noise in the data:

Choose the regularization parameter o = «(J)
(a posteriori) leading to convergent methods, i.e.

Q a(0) - 0asd—0.
°

0

Ug(s5) = Ua — o0 as a — 0.

ug—UH—>0a55—>O.
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A Posteriori Parameter Selection Strategies

For 7 € (1, 2) fixed, choose a for which
@ Morozov’s Discrepancy Principle

d(a) = HAug - f5H — 7.
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A Posteriori Parameter Selection Strategies

For 7 € (1, 2) fixed, choose a for which
@ Morozov’s Discrepancy Principle

d(a) = HAug - f5H — 7.

e Modified Discrepancy Principle

d(a) = a™ HAug _ f5H — 565 m,s>0
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A Posteriori Parameter Selection Strategies

For 7 € (1, 2) fixed, choose a for which
@ Morozov’s Discrepancy Principle

d(a) = HAug - f5H — 7.

e Modified Discrepancy Principle

d(a) = a™ HAug _ f5H — 565 m,s>0

e (Modified) Discrepancy Principle for Local
Regularization with One-step equation

d(a) = a™ HAaui - foH — 75, m>0

where A, and fJ as as defined above for One-step local
regularizing equation for the Hammerstein problem.
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A posteriori Convergence

Theorem

Under suitable conditions on 1, and the linearization parameter T,
it can be shown that, for § > 0 sufficiently small or for ||f°|| /&
sufficiently large, there exists a smallest o = a(9) € (0, @]
satisfying the Modified Discrepancy Principle for Local
Regularization with the One-step equation. Further, if the selection
of «(0) is made using the Principle, it follows that «(d) — 0 and
|ud — Tl — 0 asé — 0.
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Numerical Example

Solve

/t Mu‘?’(s)ds = f(t), te]0,1]
o 2

True solution (t) = 8(t — 0.4)? +1
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A Priori Example
0% relative error ; 5% relative error
s alpha_ =11 / s alpha,_=.15 1
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Figure: Three-smoothing problem with 0%, 0.5%, 1% and 4% relative
error in the data. The value of a(¢) is selected using that which
minimizes the solution error.
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A Posteriori Example

Figure: Three-smoothing problem with 1% relative error in the data

(6 = 0.0067). We use m = .01 and # = v/2 and @ = .25. The value of
a(0) = 0.165 is selected using the modified discrepancy principle; for ul
determined using this «, there is 4.4% relative error in the recovered
solution.
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